Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Gonca Özdemir, ${ }^{\text {a }}{ }^{*}$ Samil Işik, ${ }^{\text {a }}$ Zuhal Özdemir ${ }^{\text {b }}$ and Altan Bilgin ${ }^{\text {b }}$
 ${ }^{\text {a }}$ Department of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and ${ }^{\text {b }}$ Department of Pharmaceutical Chemistry, Hacettepe University, TR-06100 Ankara, Turkey

Correspondence e-mail: gozdemir@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.049$
$w R$ factor $=0.139$
Data-to-parameter ratio $=14.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1-(N-Ethylthiocarbamoyl)-3,5-di-2-furyl-2-pyrazoline

The molecule of the title compound, $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$, is nonplanar; the dihedral angle between the two furyl rings is 88.4 (2) ${ }^{\circ}$. The crystal structure is stabilized by one $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction.

Comment

Pyrazoles are widely studied five-membered heterocyclic compounds and their syntheses have been extensively studied (Parmar et al., 1974; Soni et al., 1987). These studies have been stimulated by some promising pharmacological, agrochemical and analytical applications (Polevoi, 1966; Batulin, 1969; Palaska et al., 1996). Compounds including a pyrazole nucleus are known to posses analgesic, anti-inflammatory, antipyretic, antiarrhythmic, tranquillizing, muscle relaxant, psychoanaleptic, anticonvulsant, hypotensive, monoamine oxidase inhibitor, antidiabetic and antibacterial activities (Bruno et al., 1993; Mazzone et al., 1986).

(I)

The molecule of the title compound, (I), is non-planar, the dihedral angles between furyl rings $\mathrm{O} 1 / \mathrm{C} 1-\mathrm{C} 4$ and $\mathrm{O} 2 / \mathrm{C} 8-\mathrm{C} 11$ and the pyrazoline ring being 6.3 (2) and $85.59(18)^{\circ}$, respectively. The dihedral angle between the two furyl rings is 88.4 (2) ${ }^{\circ}$. The crystal structure is stabilized by one $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction (Table 1).

Figure 1
An ORTEP-3 view (Farrugia, 1997) of the title compound, showing the atom-numbering scheme and 50% probability displacement ellipsoids.

Received 7 June 2005 Accepted 16 June 2005 Online 24 June 2005

Experimental

1,3-Di-2-furyl-2-propen-1-one (0.01 mol) was dissolved in ethanol $(25 \mathrm{ml})$. Hydrazine hydrate $(1 \mathrm{~g}, 0.02 \mathrm{~mol})$ was then added. The solution was warmed in a water bath for 2 h . After cooling, the solvent was entirely removed under reduced pressure and 3,5 -di-2-furyl-2-pyrazoline was obtained. The compound was dissolved in dry diethyl ether (25 ml) and then ethyl isothiocyanate (0.01 mol) and four drops of triethylamine were added. The solution was stirred for 4 h at room temperature. After removing the solvent, the residue was recrystallized from ethanol to give the compound (I) (yield 47\%; m.p. 406-408 K).

Crystal data

```
\(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}\)
\(M_{r}=289.35\)
Monoclinic, \(P 2_{b} / c\)
\(a=7.0192\) (4) A
\(b=22.1771(10) \AA\)
\(c=10.5972\) (7) \(\AA\)
\(\beta=119.541\) (4) \({ }^{\circ}\)
\(V=1435.17(14) \AA^{3}\)
\(Z=4\)
```


Data collection

Stoe IPDS-2 diffractometer ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.879, T_{\text {max }}=0.879$
13798 measured reflections
2808 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.139$
$S=1.06$
2808 reflections
193 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=1.330 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $\mathrm{K} \alpha$ radiation
Cell parameters from 9837
\quad reflections
$\theta=1.8-27.2^{\circ}$
$\mu=0.23 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prism, yellow
$0.56 \times 0.50 \times 0.43 \mathrm{~mm}$

2420 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.061$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-8 \rightarrow 8$
$k=-24 \rightarrow 27$
$l=-13 \rightarrow 13$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1115 P)^{2}\right. \\
& \quad+0.5302 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.42 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.36 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).
$C g$ is the centroid of the furyl $\mathrm{O} 2 / \mathrm{C} 8-\mathrm{C} 11$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots C g^{\mathrm{i}}$	0.93	2.86	$3.763(3)$	165

Symmetry code: (i) $x+1, y, z$.

All H atoms, except for $\mathrm{H} 6 A, \mathrm{H} 6 B$ and H 7 , were treated using a riding model, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic H), 0.97 (methylene H) or $0.96 \AA$ (methyl H). The $U_{\text {iso }}(\mathrm{H})$ values were constrained to be 1.2 (1.5 for the methyl group) times $U_{\text {eq }}(\mathrm{C})$. Atoms H6A, H6B and H7 were refined isotropically.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: $\operatorname{Win} G X$ (Farrugia, 1999).

References

Batulin, Y. M. (1969). Farmacol. Toksicol. 31, 533-536.
Bruno, O., Ranise, A., Bondavalli, F., Schenone, F., D'Amico, M., Filipelli, A., Filipelli, W. \& Francesco, R. (1993). Il Farmaco, 48, 949-966.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Mazzone, G., Puglisi, G., Corsaro, A., Panico, A., Bonina, F., Amico-Roxas, M., Caruso, A. \& Trombadore, S. (1986). Eur. J. Med. Chem. 21, 277-284.
Palaska, E., Erol, D. \& Demirdamar, R. (1996). Eur. J. Med. Chem. 31, 4347.

Parmar, S. S., Pandey, B. R., Dwivedi, C. \& Harbison, R. D (1974). J. Pharm. Sci. 63, 1152-1155.
Polevoi, L. G. (1966). Tr. Nauchn. Konf. Aspir. Ordin. 1-yi Mosk. Med. Inst. Moscow, pp. 159-161.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Soni, N., Pande, K., Kalsi, R., Gupta, T. K., Parmar, S. S. \& Barthwal, J. P. (1987). Res. Commun. Chem. Path. Pharm. 56, 129-132.

Stoe \& Cie (2002). X-AREA and X-RED32. Stoe \& Cie, Darmstadt, Germany.

